Водородная энергетика
Рефераты >> Технология >> Водородная энергетика

Схема применения ЭВГ на воздушных судах вместе с теплообменниками, осуществляющими энергетическую связь между ними и турбинными двигателями, дополнительно должна содержать бортовой конденсатор водяного пара вспомогательных газовых турбовинтовых ДВС, работающих на чистой водородно-кислородной смеси, что даст возможность многократно использовать минимальный запас оборотной воды в замкнутом цикле, а также в достатке обеспечить транспортное средство электроэнергией. Такое конструктивное решение повлечет за собой снижение полетного веса за счет уменьшения запаса топлива, а, следовательно, увеличит грузоподъемность самолета в зависимости от его класса и дальности полета на несколько десятков тонн, что резко сократит себестоимость перевозок.

На космических станциях ЭВГ может заменить гироскопы и традиционные солнечные батареи, а также обеспечить ориентационные двигатели эффективным, многократно более дешевым и безопасным топливом.

Утилизация избыточного тепла в угольных шахтах ликвидирует острую проблему безопасности угледобычи, а подземное выжигание остатков угля неперспективных шахт и использование полученного тепла на производство водородного топлива и электроэнергии решит социальные проблемы угледобывающих регионов.

Различные модификации мощностного ряда ЭВГ могут найти свое применение в малой стационарной и мобильной энергетике, особенно в сфере энергообеспечения удаленных поселений, промышленных объектов, экспедиций, фермерских хозяйств, сушилок, тепличных комплексов и т.д. В последнем случае станет возможным круглогодичное валовое производство дешевой растениеводческой продукции в районах с холодным климатом. Энергетическим источником для ЭВГ при этом может служить теплота любых водоемов, промышленных и бытовых стоков, от сжигания мусора и органических отходов, наружного или внутреннего воздуха (например, метрополитена, шахт, жилых и общественных зданий), различных промышленных паров и газов, в том числе в металлургии, химии и теплоэнергетике, компостных ям в сельском хозяйстве, а также солнечная, ветровая и геотермальная энергия.

Применение изобретения на действующих тепловых и атомных электростанциях существенно повысит их рентабельность за счет полезного использования теплопотерь. Существует реальная возможность перевода тепловых станций на использование в качестве топлива водорода, полученного при преобразовании теплоты близлежащих водоемов. В этом случае себестоимость производства электроэнергии снизится в 1,5 раза.

В черной металлургии водород заменит дорогостоящий и дефицитный кокс, позволит вести более эффективный внедоменный процесс получения стали, отапливать печи и применять в конвекторах побочно выделяющийся при разложении воды кислород, а не производить его для этой цели специально. При этом трубы металлургических заводов прекратят выбрасывать в атмосферу сотни тысяч тонн углекислоты.

Особый интерес изобретение представляет для специалистов, занимающихся

проблемами сепарации различных неорганических веществ, например, обогащением урана. Предлагаемый способ позволяет просто и эффективно непрерывно разделять изотопы U235 и U238 , одновременно выделяя их из водного раствора в виде металлического порошка, то есть объединить эти два различных процесса в одном высокопроизводительном малогабаритном аппарате.

Простота конструкции ЭВГ для промышленных предприятий дает возможность в течение нескольких месяцев освоить серийный выпуск некоторых наиболее простых модификаций генератора для нужд малой энергетики без особых организационно-технических усилий и значительных капиталовложений. Модернизация действующего грузового автомобильного и автобусного парков в стране может являться первым этапом широкомасштабного внедрения изобретения на транспорте. Несколько больших затрат средств и времени потребуется на разработку ЭВГ для других видов транспорта и мощных энергетических комплексов, но и конечные качественные результаты будут здесь несопоставимо выше. При серийном выпуске генератора в специфичных российских условиях себестоимость производства этого изделия оценивается порядка 15-25 $/кВт тепловой мощности. Расчетная рентабельность капиталовложений в освоение новации составляет более 60 % при сроке окупаемости менее 1,5 лет. Годовой экономический эффект применения генератора в среднем порядка 40-60 долл. на киловатт его тепловой мощности. Кроме того, промышленная продукция, включающая в себя ЭВГ, повышает экспортные возможности предприятий-производителей. Первоначальные затраты на изготовление действующего макета ЭВГ даже при накладных расходах предприятия 1200-1500 % не превышают 6000$.

***

1) Q + C + SiO2 → Si + CO2 ↑ + H2O — восстановление кремния углеродом

2) Si + 2H2O → SiO2 + 2H2↑ + Q — получение водорода

3) 2H2 + O2 → 2H2O + Q — сжигание водорода

Используя источник тепла (например, солнечную печь) восстанавливается кремний из окисла (реакция 1). Кремний представляет собой прекрасное ЭАВ, не требующее специальных условий хранения. Он доставляется к месту необходимого получения энергии (в том числе на транспортный двигатель). В специальном реакторе происходит реакция вытеснения водорода (реакция 2). И наконец водород поступает в двигатель в качестве топлива. Образовавшийся в результате второй реакции оксид кремния можно использовать многократно.

Использование кремния в качестве топлива для транспортных двигателей

1. Реактор

2. Поршневой двигатель внутреннего сгорания

3. Конденсатор

4. Радиатор охлаждения

5. Побудитель расхода

6. Побудитель расхода

7. Побудитель расхода

8. Охладитель кремния


Страница: