Лазер
Те фотоны, направление распространения которых в начале их возникновения не совпало с осью стержня, уйдут через боковые стенки стержня, не вызвав сколько-нибудь заметной генерации.
Именно многократное прохождение образованной световой волны между торцовыми стенками резонатора без какого-либо существенного отклонения от оси стержня обеспечивает лучу строгую направленность и огромную выходную мощность.
глава 2.
ОБЛАСТИ ПРИМЕНЕНИЯ ЛАЗЕРОВ
Уникальные свойства лазерного луча, многообразие конструкций современных лазеров и устройств на их основе обуславливают широкое применение лазерных технологий в различных областях человеческой деятельности: промышленности, науке, медицине и быту. Появление лазеров и внедрение их во многие отрасли промышленности и науки произвело в этих отраслях в буквальном смысле революцию. Благодаря этому стало возможным развитие новых более эффективных технологий, повышение производительности труда, точности измерений и качества обработки материалов. Рассмотрим здесь лишь наиболее важные области применения лазерной техники.
2.1 Применение лазеров в промышленности
Сразу же после появления лазеров и начала исследования взаимодействия лазерного луча с различными материалами стало ясно, что этот инструмент может найти широкое применение в разнообразных промышленных технологических процессах. Дело в том, что лазерный импульс несёт в себе огромный запас энергии (рубиновый лазер при кратковременном импульсе может достичь мощности в несколько миллиардов ватт. При попадании подобного луча на поверхность материала он вызывает мгновенное разогревание этой поверхности вплоть до испарения даже очень тугоплавкого материала. Это обстоятельство используется при сверлении отверстий в твердых материалах, резке и сварке металлов и пластмасс, заточке режущих инструментов, в том числе изготовленных из сверхтвердых сплавов. Сверление отверстий в алмазных фильерах при помощи традиционных способов занимает около двух часов. Этот же процесс, осуществляемый при помощи лазерной установки, длится не более 0,1секунд. Для того чтобы прожечь стальную пластинку толщиной 1 мм лучом лазера, достаточно импульса длительностью в одну тысячную секунды с энергией 0,5 дж. В результате получается отверстие порядка 0,1—0,2 мм. Лучом такой же мощности можно сварить два куска фольги толщиной 0,05мм или две тонкие проволочки.
Чтобы прожечь стальную пластинку толщиной до 5 мм, нужен импульс с энергией от 20 до 100 дж. В этом случае луч лазера необходимо сфокусировать в одну точку, для чего применяется система линз. Отверстия, образующиеся в металле под действием такого луча, обычно бывают довольно большого диаметра.
Современная радиоэлектронная промышленность выпускает большое число разнообразных приборов и устройств от простого радиоприёмника до сверхсовременных компьютеров. Основу этих устройств составляют полупроводниковые блоки и интегральные схемы, имеющие очень небольшие размеры и тонкую структуру. Соединение отдельных блоков в единое целое часто сопряжено с определёнными трудностями. И здесь на выручку приходят лазерные технологии, позволяющие соединить между собой и с изолирующей подложкой эти тонкие узлы. Лазерный луч можно сконцентрировать в очень тонкий пучок, имеющий на малых расстояниях практически нулевую расходимость. Это позволяет сконцентрировать излучаемую энергию на очень малой площади, например, соответствующей площади контакта между блоками электронной схемы.
Другой важной областью применения лазеров в промышленности можно считать использование их в различных контрольно-измерительных приборах. Луч лазера представляет собой электромагнитную волну со строго определённой длинной. Зная какое количество длин волн данного лазера укладывается в определённом отрезке, например, в одном метре, всегда можно вычислить расстояние от источника лазерного излучения до того или иного объекта. На практике это определяется по потере мощности лазерного излучения при отражении его от объекта. Отражённый луч лазера воспринимается фотоэлементом, в результате чего в анализирующей электрической цепи возникает ток, пропорциональный интенсивности отражённого луча. Лазерные установки могут быть так же использованы для контроля степени чистоты обработки поверхности материала и даже внутренней структуры этих материалов.
2.2 Использование лазеров в информационных технологиях.
Поскольку лазерное излучение является электромагнитной волной, логично было бы предположить, что лазерный луч можно использовать для передачи информации примерно так же как мы передаём информацию с помощью радиоволн. С теоретической точки зрения никаких препятствий этому нет. Но на практике такая передача информации сталкивается с существенными трудностями. Эти трудности связаны с особенностями распространения света в атмосфере. Такое распространение, как известно, в значительной степени зависит от атмосферных помех: тумана, наличия пыли, атмосферных осадков и т.п. Не смотря на то, что лазерное излучение обладает совершенно уникальными свойствами, оно так же не лишено этих недостатков.
Одним из решений проблемы нейтрализации влияния атмосферных помех на распространение лазерного луча стало использование волоконно-оптических линий. Основу таких линий составляют тончайшие стеклянные трубочки (оптические волокна), уложенные в специальную непрозрачную оболочку. Конфигурация оптических волокон рассчитывается таким образом, чтобы при прохождении по ним лазерного луча возникал эффект полного отражения, что практически полностью исключает потери информации при её передаче. Волоконно-оптические линии обладают огромной пропускной способностью. По одной нитке такой линии можно одновременно передавать в несколько раз больше телефонных разговоров, чем по целому многожильному кабелю, составленному из традиционных медных проводов. Кроме того на распространение лазерного луча по волоконно-оптическим линиям не оказывают влияние практически никакие помехи. В настоящее время волоконно-оптические линии используются при передаче сигналов кабельного телевидения высокого качества, а так же для обмена информацией между компьютерами через интернет по выделенным линиям. Существуют уже и телефонные линии, построенные с использованием оптических волокон.
С появлением полупроводниковых лазеров появилась возможность использования их для записи и чтения информации на информационных носителях – лазерных компакт-дисках. Лазерный диск представляет собой круглую пластинку, изготовленную из алюминия, покрытую прозрачным пластмассовым защитным слоем. В начале изготавливается так называемый мастер-диск, на который с помощью луча лазера наносится информация в двоичном представлении. Лазерный импульс возникает только тогда, когда через записывающее устройство проходит логическая единица. В момент прохождения логического нуля импульс не возникает. В результате в некоторых местах поверхности диска, которые теперь соответствуют логическим единицам в массиве информации, алюминий испаряется. Мастер-диск служит матрицей, с которой печатаются многочисленные копии, причём на копии в тех местах, где на мастер-диске были светоотражающие участки, возникают выемки, рассеивающие свет, а в тех местах, где на мастер-диске были выемки, на копии остаются светоотражающие островки. Чтение информации с компакт-диска осуществляется так же лазером, только значительно меньшей мощности. Луч лазера направляется на вращающийся с большой скоростью диск под некоторым углом. Частота лазерных импульсов синхронизирована со скоростью вращения диска. Луч лазера, попадая на светоотражающий островок, отражается от него и улавливается фотоэлементом. В результате в электрической цепи считывающего устройства возникает ток и сигнал воспринимается как логическая единица. Если же луч лазера попадает на рассеивающую свет выемку, то отраженный луч проходит мимо фотоэлемента и электрического тока в цепи считывающего устройства не возникает. В этом случае сигнал интерпретируется как логический ноль. В настоящее время лазерные компакт-диски широко используются как для хранения компьютерной информации, так и для хранения и распространения музыкальных программ, предназначенных для воспроизведения на лазерных проигрывателях.