Роль систем отображения информации в процессе принятия решенийРефераты >> Менеджмент >> Роль систем отображения информации в процессе принятия решений
Для обеспечения работы системы как целого она должна иметь в своем составе звено, осуществляющее интеграцию остальных звеньев. Характеристики человека позволяют ему являться таким звеном. Почему? Потому что, человек может адаптироваться к различным условиям, полагаясь на интуицию он способен быстро принимать решения не имея выбора вариантов. Но человек очень быстро утомляется при выполнении однообразных действий. Он подвержен внешним и внутренним воздействиям, его характеристики зависят от психического состояния, он способен к деквалификации при длительном бездействии. Человек значительно уступает машине по объему принимаемой и перерабатываемой информации. Максимальное количество информации ограничено у человека свойствами его памяти. Многие из недостатков человека могут быть скомпенсированы автоматическими устройствами при рациональном распределении функций между человеком и автоматическими устройствами.
3 Классификация деятельности человека-оператора в АСУ
Человек выполняет в АСУ широкий спектр функций с привлечением разнообразных технических средств. В составе АСУ выделяются эргатические и неэргатические элементы, взаимодействие которых благодаря деятельности эргатической составляющей объединяется в единый целенаправленный процесс функционирования. АСУ - это информационная эрготехническая система (ЭТС).
Все ЭТС условно можно подразделить на информационно-управляющие и производящие новую информацию. К первому типу относятся АСУ ТП, АСУП, ОАСУ, ОГАС. Ко второму типу относятся автоматизированная система научных исследований (АСНИ), система автоматизированного проектирования (САПР), автоматизированная система технологической подготовки производства (АСТПП). Сами эти элементы не являются управляющими, но могут включаться как элементы в интегрированные АСУ. В АСУ можно выделить следующие типы операторской деятельности:
а) оператор-технолог - это человек, который непосредственно включен в процесс, выполняет стандартные процедуры управления процессом в режиме реального времени. Основное содержание деятельности: определение объекта (модели), соотнесение текущей ситуации к возможным вариантам ее решения и принятие одного из выбранных решений.
б) оператор-манипулятор. Основную роль играют механизмы сенсомоторной деятельности, связанной с восприятием и переработкой информации и осуществлением ответного действия. К этой категории операторов предъявляются высокие требования по их тренированности и координации движений, способности мгновенно ориентироваться и принимать решения в критических ситуациях и автоматически выполнять эти решения.
в) оператор-наблюдатель - это классический тип оператора. Деятельность: важная роль отводится информационным и концептуальным моделям. Пример: диспетчер транспортных систем, операторы слежения радиолокационных станций.
г) оператор-исследователь - опирается на аппарат понятийного мышления и опыт. Поэтому для него возрастает значимость информационной модели. Пример: исследователи любого профиля.
д) оператор-руководитель, объектами управления которого являются другие люди. Управление может осуществляться непосредственно и через каналы связи. В деятельности операторов-исследователей и операторов-руководителей все большее значение приобретают процессы формирования целей и выбора способов их достижения.
е) оператор-проектировщик - это человек, который непосредственно включен в процесс машинного проектирования в составе САПР.
4. Основные характеристики человека-оператора в системах "Человек-машина"
Основными характеристиками человека-оператора являются быстродействие, точность, надежность. Оценкой быстродействия оператора является время решения задачи, т.е. время от момента появления сигнала до момента окончания управляющих воздействий. Вместе с показателями быстродействия технических элементов системы "человек-машина" этот показатель определяет быстродействие всей системы. Оценкой его является время прохождения информации по замкнутому кругу "человек-машина".
Тц = ТАУоп + сумм(i=1; n)t mi
где ТАУоп - время отработки информации (решение задачи управления) оператором;
n - число звеньев машины; t mi - время задержки информации в i-м звене машины.
При заданном времени цикла регулирования Тц (исходя из общих технических требований к системе) и известных значениях t mi требуемое быстродействие оператора должно удовлетворять условию
ТАУоп <= Тц - сумм(i=1; n)t mi = tл
где tл - лимит времени, отводимый оператору для решения задачи. Для проверки выполнения условия нужно знать время ТАУоп, которое определяется либо экспериментально для реальных систем, либо расчетным путем для проектируемых систем с помощью методов прогнозирования времени решения задач оператором. Из них относительно простой - информационный метод. Он применяется на ранних этапах проектирования. В основу информационного метода положена линейная зависимость между временем решения задачи оператором и количеством перерабатываемой информации:
ТАУоп = a + bH = a + H/Vоп (2.1)
а - скрытое время реакции, а = 0,2/0,6 с; b - время переработки одной двоичной информации; H - количество перерабатываемой оператором информации; Vоп - скорость переработки информации оператором, Vоп = 2/4 дв.ед./с. При работе оператора по заранее отработанному алгоритму его деятельность может быть представлена как совокупность последовательно осуществляемых реакций. Время простой реакции ТАУпр определяется временем восприятия сигнала ТАУв и временем осуществления моторного акта ТАУм, связанного с движением руки к органу управления
ТАУпр = ТАУв + ТАУм
Время сложной реакции отличается от времени простой временем, затрачиваемым на выбор нужного сигнала, принятие решения на осуществление управляющего воздействия.
ТАУоп = ТАУв + ТАУреш + ТАУоу + ТАУм (2.2)
где ТАУреш - время принятия решения; ТАУоу - время поиска и обнаружения нужного органа управления. Каждое из слагаемых, входящих в (2.2), рассчитывают с помощью выражения (2.1). Точность работы оператора есть степень отклонения значения параметра, измеряемого оператором, от истинного, заданного значения. Количественно этот параметр оценивается погрешностью, с которой оператор измеряет данный параметр:
y = Iп - Iф
где Iп - истинное значение параметра; Iф - измеряемое, фактическое значение параметра. Различают систематическую и случайную погрешности.
Случайна погрешность оценивается среднеквадратической погрешностью, систематическая погрешность - значением математического ожидания отдельных погрешностей. Точность работы оператора зависит от многих факторов: характеристик сигнала, степени сложности задач, условий и темпа работы, индивидуальных особенностей, квалификации и др. Надежность человека-оператора: характеризует его способность выполнять в полном объеме возложенные на него
функции при определенных условиях; характеризуется безошибочностью, готовностью, восстанавливаемостью и своевременностью. Основным показателем безошибочности является вероятность безошибочной работы на уровне отдельной операции и на уровне полного алгоритма в целом. Вероятность безошибочного выполнения операций j-го вида и интенсивность ошибок, допущенных при этом, определяется как